MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/31 Paper 3 (Advanced Practical Skills 1), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE ASIA LEVEL - October/November 2011	9701	31

Question	Sections	Indicative material	Mark	
1 (a)	PDO Recording ACE Interpretation MMO Quality	I Thermometer readings for all experiments recorded to 0.0 or $0.5^{\circ} \mathrm{C}$. (At least one recorded to $0.5^{\circ} \mathrm{C}$.) II Calculation of all temperature changes correct. Award III for a temperature rise followed by constant temperature (within $0.5^{\circ} \mathrm{C}$). Award IV and \mathbf{V} for a maximum rise within $0.5^{\circ} \mathrm{C}$ of supervisor. Award IV for a maximum rise within $1.0^{\circ} \mathrm{C}$ of supervisor. Award VI and VII for the experiment 3 temperature rise within $0.5^{\circ} \mathrm{C}$ of supervisor. Award VI for the experiment $\mathbf{3}$ temperature rise within $1.0^{\circ} \mathrm{C}$ of supervisor.	1 1 1 1 1	
(b)	PDO Layout	I Axes correct and labelled: temperature change/ T change/ $\Delta \mathrm{T}$ and volume/vol/V (of) sodium hydroxide/ $\mathrm{NaOH} / \mathrm{FA} 1$ and correct units $/{ }^{\circ} \mathrm{C}$ or $\left({ }^{\circ} \mathrm{C}\right)$ or 'in ${ }^{\circ} \mathrm{C}^{\prime}$; $/ \mathrm{cm}^{3}$ or $\left(\mathrm{cm}^{3}\right)$ (allow NaOH in cm^{3}) II Scales chosen so that graph occupies at least half the available length for x - and y-axes. III Plotting - all points accurate to within half a small square and in the correct square. IV Draws two straight lines of best fit which intersect.	1 1 1	[4]
(c)	ACE Interpretation	Reads to nearest $1 / 2$ square to 1 or 2 dp volume of FA 1 and temperature rise from intercept. Do not award if $\Delta \mathrm{T}$ at intercept (or point) < max $\Delta \mathrm{T}$ from table unless candidate has clearly indicated the max $\Delta \mathrm{T}$ is anomalous.	1	[1]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9701	31

(d)	ACE Conclusions		The temperature/temperature change increases as more reaction/more hydrochloric acid/sodium hydroxide reacts/as more water formed. The temperature/temperature change stays constant/decreases when all acid/limiting reagent has reacted/excess NaOH is added.	1 1	[2]
(e)	ACE Interpretation		Volume used in calculation is $65 \mathrm{~cm}^{3}$ Heat energy change calculated using candidate's value for ΔT correct to 3 or 4 sf	1 1	[2]
(f)	ACE Interpretation		$\frac{25 \times 2}{1000}=0.05$	1	1]
(g)	ACE Interpretation PDO Display		Candidate's answer to (e) Candidate's answer to (f) Correct calculation, conversion J to kJ and negative sign to 3 or 4 sf	1 1	[2]
(h)	ACE Conclusions		hat rise in temperature is proportional to increase nergy produced/change in volume gives different nge in temperature for same energy produced/ ease in volume requires increase in energy for e temperature rise.	1	[1]
(i)	PDO Display ACE Interpretation		Number moles $\mathrm{NaOH}=$ number moles HCl (stated or clearly shown) Calculates or expression for Concentration $=\frac{0.05(\text { ecf from (f)) }}{\text { answer to (c)/1000 }}$ If answer only, award mark if correct to 3 or 4 sf	1	[2]
(j)	ACE Improvements		more concentrated solutions. w use $\leq 5 \mathrm{~cm}^{3}$ water each time) re all references to heat energy losses.	1	[1]
(k)	ACE Conclusions		Two straight intersecting lines (positive followed by zero gradient). Same ΔT and V shown as in (b).	1 1	[2]
	[Total: 25]				

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9701	31

FA 3 is $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(\mathrm{~s})$; FA 4 is $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$; FA 5 is $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$; FA 6 is $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$ and (aq)

